3.1183 \(\int \frac {(a+i a \tan (e+f x))^m}{c+d \tan (e+f x)} \, dx\)

Optimal. Leaf size=122 \[ \frac {(a+i a \tan (e+f x))^m \, _2F_1\left (1,m;m+1;\frac {1}{2} (i \tan (e+f x)+1)\right )}{2 f m (d+i c)}-\frac {d (a+i a \tan (e+f x))^m \, _2F_1\left (1,m;m+1;-\frac {d (i \tan (e+f x)+1)}{i c-d}\right )}{f m \left (c^2+d^2\right )} \]

[Out]

1/2*hypergeom([1, m],[1+m],1/2+1/2*I*tan(f*x+e))*(a+I*a*tan(f*x+e))^m/(I*c+d)/f/m-d*hypergeom([1, m],[1+m],-d*
(1+I*tan(f*x+e))/(I*c-d))*(a+I*a*tan(f*x+e))^m/(c^2+d^2)/f/m

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3562, 3481, 68, 3599} \[ \frac {(a+i a \tan (e+f x))^m \, _2F_1\left (1,m;m+1;\frac {1}{2} (i \tan (e+f x)+1)\right )}{2 f m (d+i c)}-\frac {d (a+i a \tan (e+f x))^m \, _2F_1\left (1,m;m+1;-\frac {d (i \tan (e+f x)+1)}{i c-d}\right )}{f m \left (c^2+d^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x]),x]

[Out]

(Hypergeometric2F1[1, m, 1 + m, (1 + I*Tan[e + f*x])/2]*(a + I*a*Tan[e + f*x])^m)/(2*(I*c + d)*f*m) - (d*Hyper
geometric2F1[1, m, 1 + m, -((d*(1 + I*Tan[e + f*x]))/(I*c - d))]*(a + I*a*Tan[e + f*x])^m)/((c^2 + d^2)*f*m)

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3481

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Dist[b/d, Subst[Int[(a + x)^(n - 1)/(a - x), x]
, x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]

Rule 3562

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[a/(
a*c - b*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[d/(a*c - b*d), Int[((a + b*Tan[e + f*x])^m*(b + a*Tan[e
+ f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2
, 0] && NeQ[c^2 + d^2, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^m}{c+d \tan (e+f x)} \, dx &=\frac {\int (a+i a \tan (e+f x))^m \, dx}{c-i d}-\frac {d \int \frac {(a+i a \tan (e+f x))^m (i a+a \tan (e+f x))}{c+d \tan (e+f x)} \, dx}{a (c-i d)}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {(a+x)^{-1+m}}{a-x} \, dx,x,i a \tan (e+f x)\right )}{(i c+d) f}+\frac {(a d) \operatorname {Subst}\left (\int \frac {(a+i a x)^{-1+m}}{c+d x} \, dx,x,\tan (e+f x)\right )}{(i c+d) f}\\ &=\frac {\, _2F_1\left (1,m;1+m;\frac {1}{2} (1+i \tan (e+f x))\right ) (a+i a \tan (e+f x))^m}{2 (i c+d) f m}-\frac {d \, _2F_1\left (1,m;1+m;-\frac {d (1+i \tan (e+f x))}{i c-d}\right ) (a+i a \tan (e+f x))^m}{\left (c^2+d^2\right ) f m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 14.32, size = 0, normalized size = 0.00 \[ \int \frac {(a+i a \tan (e+f x))^m}{c+d \tan (e+f x)} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x]),x]

[Out]

Integrate[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x]), x]

________________________________________________________________________________________

fricas [F]  time = 0.73, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\left (\frac {2 \, a e^{\left (2 i \, f x + 2 i \, e\right )}}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}\right )^{m} {\left (i \, e^{\left (2 i \, f x + 2 i \, e\right )} + i\right )}}{{\left (i \, c + d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + i \, c - d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e)),x, algorithm="fricas")

[Out]

integral((2*a*e^(2*I*f*x + 2*I*e)/(e^(2*I*f*x + 2*I*e) + 1))^m*(I*e^(2*I*f*x + 2*I*e) + I)/((I*c + d)*e^(2*I*f
*x + 2*I*e) + I*c - d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{m}}{d \tan \left (f x + e\right ) + c}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c), x)

________________________________________________________________________________________

maple [F]  time = 3.82, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +i a \tan \left (f x +e \right )\right )^{m}}{c +d \tan \left (f x +e \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e)),x)

[Out]

int((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{m}}{d \tan \left (f x + e\right ) + c}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((I*a*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^m}{c+d\,\mathrm {tan}\left (e+f\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^m/(c + d*tan(e + f*x)),x)

[Out]

int((a + a*tan(e + f*x)*1i)^m/(c + d*tan(e + f*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{m}}{c + d \tan {\left (e + f x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**m/(c+d*tan(f*x+e)),x)

[Out]

Integral((I*a*(tan(e + f*x) - I))**m/(c + d*tan(e + f*x)), x)

________________________________________________________________________________________